冠杰订购热线:

0755-27839151
当前位置首页 » 行业资讯 » 冠杰新闻 » FOX轻型石英晶体

FOX轻型石英晶体

返回列表 来源:冠杰电子 浏览:- 发布日期:2023-09-01 11:42:39【

FOX轻型石英晶体,美国福克斯公司凭借着精湛工艺打磨出高质量的石英晶振,并因此一举成名,成为当下最受欢迎的元器件制造商之一,随着行业的快速发展,福克斯公司不断优化与迭代自身的产品,因而在市场上获得更多的机会,为了更好满足用户的需求,对于产品极致的追求,使得FOX公司不断突破自我,走向新的创新之路,也成就更加伟大的福克斯。

石英晶体的“老化”导致频率随时间变化,可能必须采取这种影响由客户在设计电路时考虑取决于需要实现。石英老化的主要原因有两个晶体,一个是由于传质,另一个是因为强调.

质量转移

设备封装内的任何不希望的污染都可能将物质转移到晶体中或从晶体中转移出来,导致将改变频率的石英坯的质量设备的。例如,用于安装石英坯件会产生“排气” 会在惰性气体中产生氧化物质密封的水晶包装里的空气生产过程必须得到很好的控制。理想情况下制造方法尽可能干净,以消除任何效果并给出良好的老化结果。

强调
这可能发生在晶体的各个组件中从石英坯料的加工环氧树脂安装粘合剂,晶体安装结构以及器件中使用的金属电极材料的类型。加热和冷却也会由于不同膨胀系数。系统中的应力通常随着系统放松而随时间变化,这可能导致频率的变化。
实践中的老龄化
当观察晶体的示例老化测试结果时,可以看出,频率的变化通常是在第一年最伟大,并随着时间的推移而衰退。它必须然而,请注意,例如,如果指定了设备每年最大±5ppm;这并不意味着衰老5年后为±5ppm×5年,即±25ppm。在实践中,示例的±5ppm老化装置可能仅为±1ppm至运行第一年±2ppm,然后减少随后几年。对于10年内最大±10ppm的石英晶体谐振器老化,通常使用通用“指南”尽管在现实中它通常比这个要少得多。是的甚至无法预测设备的确切老化在同一时间由同一批石英将表现出略微不同的老化特性。
生产过程必须从零件到部分,来自石英坯料的制造,电极尺寸及其位置,用于安装石英及其固化热剖面,都有轻微影响在频率上。设备可能老化为负或正取决于内部原因一个批次往往遵循类似的结果。一般来说在90%以上的制造零件中,老化效应是负面的。

原厂编码 厂家 型号 频率 频率稳定度
FOXSLF/250F-20 福克斯晶振 HC49SLF 25MHz ±50ppm
FOXSLF/147-20 福克斯晶振 HC49SLF 14.7456MHz ±50ppm
FOXSLF/073-20 福克斯晶振 HC49SLF 7.3728MHz ±50ppm
FOXSLF/160-20 福克斯晶振 HC49SLF 16MHz ±50ppm
FOXSLF/160 福克斯晶振 HC49SLF 16MHz ±50ppm
FOXSLF/080 福克斯晶振 HC49SLF 8MHz ±50ppm
FOXSLF/128-20 福克斯晶振 HC49SLF 12.288MHz ±50ppm
FOXSLF/245F-20 福克斯晶振 HC49SLF 24.576MHz ±50ppm
FOXSLF/040A 福克斯晶振 HC49SLF 4MHz ±50ppm
FOXSLF/120 福克斯晶振 HC49SLF 12MHz ±50ppm
FOXSLF/0368-20 福克斯晶振 HC49SLF 3.6864MHz ±50ppm
FOXSLF/240F-20 福克斯晶振 HC49SLF 24MHz ±50ppm
FOXLF250F-20 福克斯晶振 HC49ULF 25MHz ±50ppm
FOXLF120-20 福克斯晶振 HC49ULF 12MHz ±50ppm
FOXLF160 福克斯晶振 HC49ULF 16MHz ±50ppm
FOXLF160-20 福克斯晶振 HC49ULF 16MHz ±50ppm
FOXLF040A 福克斯晶振 HC49ULF 4MHz ±50ppm
FOXLF0368-20 福克斯晶振 HC49ULF 3.6864MHz ±50ppm
FOXSLF/143-20 福克斯晶振 HC49SLF 14.31818MHz ±50ppm
FOXSDLF/143-20 福克斯晶振 HC49SDLF 14.31818MHz ±50ppm
FOXSDLF/245F-20 福克斯晶振 HC49SDLF 24.576MHz ±50ppm
FOXSDLF/041 福克斯晶振 HC49SDLF 4.194304MHz ±50ppm
FOXSDLF/100-20 福克斯晶振 HC49SDLF 10MHz ±50ppm
FOXSDLF/160R-20/TR 福克斯晶振 HC49SDLF 16MHz ±50ppm
FOXSDLF/200R-20/TR 福克斯晶振 HC49SDLF 20MHz ±50ppm
FOXSDLF/245FR-20/TR 福克斯晶振 HC49SDLF 24.576MHz ±50ppm
FQ5032B-24.576 福克斯晶振 C5BQ 24.576MHz ±30ppm
FQ5032B-24.000 福克斯晶振 C5BQ 24MHz ±30ppm
FQ5032B-16.000 福克斯晶振 C5BQ 16MHz ±30ppm
FQ5032BR-25.000 福克斯晶振 C5BQ 25MHz ±50ppm
FQ5032BR-12.000 福克斯晶振 C5BQ 12MHz ±50ppm
FQ5032BR-20.000 福克斯晶振 C5BQ 20MHz ±50ppm
FQ5032BR-24.000 福克斯晶振 C5BQ 24MHz ±50ppm
FQ7050B-10.000 福克斯晶振 C7BQ 10MHz ±30ppm
FQ7050BR-8.000 福克斯晶振 C7BQ 8MHz ±50ppm
FQ7050BR-6.000 福克斯晶振 C7BQ 6MHz ±50ppm
FQ3225B-16.000 福克斯晶振 FQ3225B 16MHz ±50ppm
FQ3225B-27.000 福克斯晶振 FQ3225B 27MHz ±50ppm
FQ3225BR-25.000 福克斯晶振 FQ3225B 25MHz ±50ppm
FQ3225BR-24.000 福克斯晶振 FQ3225B 24MHz ±50ppm
FQ3225BR-12.000 福克斯晶振 FQ3225B 12MHz ±50ppm
FQ1045AR-6.000 福克斯晶振 FQ1045A 6MHz ±30ppm
FQ1045AR-4.000 福克斯晶振 FQ1045A 4MHz ±30ppm
FQ1045AR-3.6864 福克斯晶振 FQ1045A 3.6864MHz ±30ppm
FOXSLF/0368S 福克斯晶振 HC49SLF 3.6864MHz ±50ppm
FOXLF120 福克斯晶振 HC49ULF 12MHz ±50ppm
FOXSDLF/128-20 福克斯晶振 HC49SDLF 12.288MHz ±50ppm
FOXSDLF/081-20 福克斯晶振 HC49SDLF 8.192MHz ±50ppm
FOXSDLF/098-20 福克斯晶振 HC49SDLF 9.8304MHz ±50ppm
FOXSDLF/196-20 福克斯晶振 HC49SDLF 19.6608MHz ±50ppm
FOXSLF/115 福克斯晶振 HC49SLF 11.0592MHz ±50ppm
FOXSLF/200 福克斯晶振 HC49SLF 20MHz ±50ppm
FOXSDLF/0368R-20/TR 福克斯晶振 HC49SDLF 3.6864MHz ±50ppm
FOXSDLF/040R/TR 福克斯晶振 HC49SDLF 4MHz ±50ppm
FOXSDLF/060R-20/TR 福克斯晶振 HC49SDLF 6MHz ±50ppm
FOXSDLF/073R-20/TR 福克斯晶振 HC49SDLF 7.3728MHz ±50ppm
FOXSDLF/100R-20/TR 福克斯晶振 HC49SDLF 10MHz ±50ppm
FOXSDLF/115R-20/TR 福克斯晶振 HC49SDLF 11.0592MHz ±50ppm
FOXSDLF/143R-20/TR 福克斯晶振 HC49SDLF 14.31818MHz ±50ppm
FOXSDLF/240FR-20/TR 福克斯晶振 HC49SDLF 24MHz ±50ppm
FOXSDLF250F-20 福克斯晶振 HC49SDLF 25MHz ±50ppm
FX252BS-20.000 福克斯晶振 FX252B 20MHz ±50ppm
FQ5032BR-10.000 福克斯晶振 C5BQ 10MHz ±30ppm
FQ5032BR-16.000 福克斯晶振 C5BQ 16MHz ±50ppm
FX532B-10.000 福克斯晶振 FX532B 10MHz ±50ppm
FQ7050B-11.0592 福克斯晶振 C7BQ 11.0592MHz ±30ppm
FX425B-16.000 福克斯晶振 FX425B 16MHz ±50ppm
FQ5032B-19.6608 福克斯晶振 C5BQ 19.6608MHz ±30ppm
FQ5032B-14.7456 福克斯晶振 C5BQ 14.7456MHz ±30ppm
FQ5032B-10.000 福克斯晶振 C5BQ 10MHz ±30ppm
加速老化

使用加速老化是行业的常见做法预测长期频率移动的过程高温浸泡装置和测量以相关间隔进行频率移动。这是正常的使用无源测试(即无电源)测试SMD晶振晶体。使用的一般规则是将晶体在+85°C下浸泡30天相当于在普通房间老化1年温度如果此测试延长了足够的时间,则记录的数据可以用图形绘制,以便通过外推,对未来长期老化的预测。
频率调整
请注意,石英的老化有效地改变了晶体的频率公差,而不是直接影响石英在温度下的稳定性任何很大的程度,因为该参数由所用石英的“切割角度”决定。如果使用石英振荡器具有诸如VCXO、TCXO或OCXO,输出频率可以调整回其标称指定值。
设计

工程师使用晶体或振荡器通常会知道整体稳定性的数值他们的设备必须在特定的时间段内满足要求。当装置的公差和/或稳定性降低时衰老变得越重要。例如使用温度稳定性为±1ppm的TCXO需要将老化保持在相对较小的值。但是,如果设计的总频率移动裕量是示例±200ppm和额定值为±100ppm的设备则可以有效地进行少量老化已忽略。FOX轻型石英晶体.

The ‘ageing’ of a quartz crystal results in a small change of frequency over time and this effect may have to be taken into account by the customer when designing their circuit depending upon the overall specification that needs to be achieved. There are two main causes of ageing in quartz crystals, one due to mass-transfer and the other due to stress.

Mass-Transfer 

Any unwanted contamination inside the device package can transfer material to or from the crystal causing a change in the mass of the quartz blank which will alter the frequency of the device. For example, the conductive epoxy used to mount the quartz blank can produce ‘out-gassing’ which can create oxidising material within the otherwise inert atmosphere inside the sealed crystal package and so this production process must be well controlled. Ideally the manufacturing method is as clean as possible to negate any effects and give good ageing results.

Stress

This can occur within various components of the crystal from the processing of the quartz blank, the curing of the epoxy mounting adhesive, the crystal mounting structure and the type of metal electrode material used in the device. Heating and cooling also causes stress due to different expansion coefficients. Stress in the system usually changes over time as the system relaxes and this can cause a change in frequency.

Ageing in practice

 When looking at example ageing test results of crystals, it can be seen that the change in frequency is generally greatest in the 1st year and decays away with time. It must be noted however that for example if a device is specified at ±5ppm max per year; it does not follow that the ageing after 5 yrs will be ±5ppm x 5yrs, i.e. ±25ppm. In practice, the example ±5ppm ageing device may be only ±1ppm to ±2ppm in the 1st year of operation and then reduces over subsequent years. It is common to use a general ‘guiderule’ for crystal ageing of ±10ppm max over 10 years although in reality it is usually much less than this. It is impossible to predict the exact ageing of a device as even parts made at the same time and from the same batch of quartz will exhibit slightly different ageing characteristics. The production process must be consistent from part to part, from the manufacture of the quartz blank, the electrode size and its placement, to the epoxy used to mount the quartz and its curing thermal profile, all have a slight affect on frequency. Devices can age negatively or positively depending upon the internal causes although parts from one batch tend to follow similar results. Generally the ageing effect is negative in over 90% of parts manufactured

Accelerated ageing 

It is common industry practice to use an accelerated ageing process to predict long term frequency movement by soaking devices at elevated temperatures and measuring frequency movement at relevant intervals. It is normal to test crystals using a passive test (i.e. non-powered). The general rule used is that soaking a crystal at +85°C for 30 days is equivalent to 1 year of ageing at normal room temperature. If this test is extended for enough time then the recorded data can be plotted graphically to enable via extrapolation, the prediction of future long term ageing.

Frequency adjustment 

Note that the ageing of quartz effectively changes the frequency tolerance of the crystal and does not directly influence the stability of the quartz over temperature to any great degree as this parameter is dictated by the ‘cutangle’ of the quartz used. If using quartz oscillators that have a voltage-control function such as VCXOs, TCXOs or OCXOs, the output frequency can be adjusted back to its nominally specified value.

Design 

The engineer designing a circuit using either a crystal or oscillator will generally know what overall stability figure their equipment must meet over a particular time period. As the tolerance and/or stability of a device decreases then the more important ageing becomes. For example using a TCXO at ±1ppm stability over temperature will require ageing to be kept to relatively small values. However, if the total frequency movement allowance of a design is for example ±200ppm and a device with a rating of ±100ppm is used then a small amount of ageing can effectively be ignored.