冠杰订购热线:

0755-27839151
当前位置首页 » 常见问题 » 领先同行瑞萨低相噪时钟振荡器应用

领先同行瑞萨低相噪时钟振荡器应用

返回列表 来源:冠杰电子 浏览:- 发布日期:2023-09-23 09:41:10【

领先同行瑞萨低相噪时钟振荡器应用,瑞萨提供业内最广泛和最深入的硅时序产品组合。除了种类繁多的缓冲器和时钟频率合成器产品,我们还提供领先的时钟振荡器解决方案,以解决几乎任何应用中的时序挑战。我们的产品组合在模拟和数字时序领域拥有超过20年的成熟专业知识,在先进的时序技术中具有最低的相位噪声和最高的性能。

时序和时钟IC广泛应用于网络、射频、物联网、电信、图像传感器、医疗甚至音频应用。设计时序IC的外部电路时,我们必须注意电源设计。就像我们不应该给兰博基尼加满廉价的汽油一样,我们也不应该用高噪声电源给低噪声时序IC供电。

对于上述所有应用中使用的定时和时钟IC,电源通常是电池或5V至AC之间的任何电压总线。电源电压通常通过开关模式电源被逐步降低到适当的水平。这里,一些外部辐射或传导噪声可能会耦合到系统中,电源可能会产生自己的内部噪声,导致其输出电压携带较宽的频谱,并产生不准确的时序/时钟信号。如果不添加强滤波器或低噪声LDO,我们就不能直接从这种高噪声电源为任何噪声敏感的时序或时钟IC供电,如图1所示。由于SMD振荡器尺寸优势、精确的输出电压和更好的动态负载响应,低噪声LDO始终优于大型滤波器.图1

图一。为噪声敏感电路供电的典型电源图

这种低噪声LDO通常具有非常高的电源抑制比(PSRR)来阻挡输入噪声,并且其自生噪声也非常低。PSRR是特定频率下LDO输入电压纹波与输出电压纹波的比值,通常以对数形式表示:

公式

PSRR通常随负载电流、裕量电压、输出电容以及外部噪声滤波器电容和输出电压而变化,具体取决于有源晶振器件。外部电容可以轻松改善高频PSRR。然而,对于低频滤波,电容可能变得相当大且昂贵,因此选择在低频具有非常高PSRR的LDO可能有助于减小电容尺寸。

图2显示了不同系统设置下的PSRR方差。根据图2B,PSRR较高,高频时输出电容较大,而LDO在低频时已经有很高的PSRR。根据图2D,如果在轻负载下需要更高的PSRR,设计人员可以在带隙引脚上增加一个小的低成本电容,不仅可以改善PSRR,还可以改善内部噪声。领先同行瑞萨低相噪时钟振荡器应用.

图3

图2 PSRR与其他系统设置

LDO的另一个重要参数是内部噪声,它以两种方式表示。一个是频谱噪声密度,这是一条显示噪声与频率关系的曲线。在射频等频谱受管制的应用中,噪声必须控制在“发射屏蔽”范围内,才能通过认证测试。因此,用户应检查目标频率附近的频谱噪声密度曲线。典型的频谱噪声图如图3所示。

Mfr Part # Mfr Description Series Frequency Output Voltage - Supply Frequency Stability
XLH300000.000000K Renesas晶振 XTAL OSC XO HCMOS SMD XL - HCMOS - ±100ppm
XLH335006.005284K Renesas晶振 XTAL OSC XO 6.005284MHZ HCMOS XL 6.005284 MHz HCMOS 3.3V ±50ppm
XLH528031.250000X Renesas晶振 XTAL OSC XO 31.2500MHZ LVCMOS XL 31.25 MHz LVCMOS 2.5V ±20ppm
XLH526031.250000I Renesas晶振 XTAL OSC XO 31.2500MHZ LVCMOS XL 31.25 MHz LVCMOS 2.5V ±25ppm
XLH53V026.000000I Renesas晶振 XTAL OSC VCXO 26.0000MHZ LVCMOS XL 26 MHz LVCMOS 3.3V -
XLH535133.333333I Renesas晶振 XTAL OS XO 133.333333MHZ LVCMOS XL 133.333333 MHz LVCMOS 3.3V ±50ppm
XLH535133.330000I Renesas晶振 XTAL OSC XO 133.3300MHZ LVCMOS XL 133.33 MHz LVCMOS 3.3V ±50ppm
XLH736122.906000I Renesas晶振 OSC 122.906MHZ SMD * - - - -
XLH335074.250000K Renesas晶振 XTAL OSC XO 74.2500MHZ LVCMOS XL 74.25 MHz LVCMOS 3.3V ±50ppm
XLH335037.125000K Renesas晶振 XTAL OSC XO 37.1250MHZ LVCMOS XL 37.125 MHz LVCMOS 3.3V ±50ppm
XLH330002.097152K Renesas晶振 XTAL OSC XO 2.097152MHZ LVCMOS XL 2.097152 MHz LVCMOS 3.3V ±100ppm
XLH335008.000000K Renesas晶振 XTAL OSC XO 8.0000MHZ LVCMOS SMD XL 8 MHz LVCMOS 3.3V ±50ppm
XLH335003.200000K Renesas晶振 XTAL OSC XO 3.2000MHZ LVCMOS SMD XL 3.2 MHz LVCMOS 3.3V ±50ppm
XLH335126.488100K Renesas晶振 XTAL OSC XO 126.4881MHZ LVCMOS XL 126.4881 MHz LVCMOS 3.3V ±50ppm
XLH335100.000000K Renesas Crystal XTAL OSC XO 100.0000MHZ LVCMOS XL 100 MHz LVCMOS 3.3V ±50ppm
XAH335033.333000X Renesas晶振 CLCC 3.20X2.50X0.90 MM, 2.10MM P XA 33.333 MHz HCMOS 3.3V ±50ppm
XAH335033.333333X Renesas晶振 CLCC 3.20X2.50X0.90 MM, 2.10MM P XA 33.333333 MHz HCMOS 3.3V ±50ppm
XAH335060.000000X Renesas晶振 CLCC 3.20X2.50X0.90 MM, 2.10MM P XA 60 MHz HCMOS 3.3V ±50ppm
XLH535036.000000K Renesas晶振 XTAL OSC XO 36.0000MHZ LVCMOS XL 36 MHz LVCMOS 3.3V ±50ppm
XAH335080.000000K Renesas晶振 OSC XO 80.0000MHZ LVCMOS SMD XA 80 MHz LVCMOS 3.3V ±50ppm
XLH3AA100.000000I Renesas晶振 XTAL OSC XO 100.0000MHZ HCMOS XL 100 MHz HCMOS - -
XLH3AA125.000000I Renesas晶振 XTAL OSC XO 125.0000MHZ HCMOS XL 125 MHz HCMOS - ±100ppm
XLH3AA025.000000I Renesas晶振 XTAL OSC XO 25.0000MHZ HCMOS SMD XL 25 MHz HCMOS - -
XLH536001.843200I Renesas晶振 XTAL OSC XO 1.8432MHZ HCMOS SMD XPRESSO  FXO-HC53 1.8432 MHz HCMOS 3.3V ±25ppm
XLH536033.000000I Renesas晶振 XTAL OSC XO 33.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 33 MHz HCMOS 3.3V ±25ppm
XLH536004.000000I Renesas晶振 XTAL OSC XO 4.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 4 MHz HCMOS 3.3V ±25ppm
XLH536062.500000I Renesas晶振 XTAL OSC XO 62.5000MHZ HCMOS SMD XPRESSO  FXO-HC53 62.5 MHz HCMOS 3.3V ±25ppm
XLH736060.000000I Renesas晶振 XTAL OSC XO 60.0000MHZ HCMOS SMD XPRESSO  FXO-HC73 60 MHz HCMOS 3.3V ±25ppm
XLH736062.500000I Renesas晶振 XTAL OSC XO 62.5000MHZ HCMOS SMD XPRESSO  FXO-HC73 62.5 MHz HCMOS 3.3V ±25ppm
XLH736066.000000I Renesas晶振 XTAL OSC XO 66.0000MHZ HCMOS SMD XPRESSO  FXO-HC73 66 MHz HCMOS 3.3V ±25ppm
XLH536016.384000I Renesas晶振 XTAL OSC XO 16.3840MHZ HCMOS SMD XPRESSO  FXO-HC53 16.384 MHz HCMOS 3.3V ±25ppm
XLH536066.000000I Renesas晶振 XTAL OSC XO 66.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 66 MHz HCMOS 3.3V ±25ppm
XLH736014.318180I Renesas晶振 XTAL OSC XO 14.31818MHZ HCMOS XPRESSO  FXO-HC73 14.31818 MHz HCMOS 3.3V ±25ppm
XLH736016.384000I Renesas晶振 XTAL OSC XO 16.3840MHZ HCMOS SMD XPRESSO  FXO-HC73 16.384 MHz HCMOS 3.3V ±25ppm
XLH736003.686400I Renesas晶振 XTAL OSC XO 3.6864MHZ HCMOS SMD XPRESSO  FXO-HC73 3.6864 MHz HCMOS 3.3V ±25ppm
XLH320180.000000I Renesas晶振 XTAL OSC XO 180.0000MHZ HCMOS XPRESSO  FXO-HC32 180 MHz HCMOS 2.5V ±100ppm
XLH335250.000000I Renesas晶振 XTAL OSC XO 250.0000MHZ HCMOS XPRESSO  FXO-HC33 250 MHz HCMOS 3.3V ±50ppm
XLH526100.000000I Renesas晶振 XTAL OSC XO 100.0000MHZ HCMOS XPRESSO  FXO-HC52 100 MHz HCMOS 2.5V ±25ppm
XLH535225.060000I Renesas晶振 XTAL OSC XO 225.0600MHZ HCMOS XPRESSO  FXO-HC53 225.06 MHz HCMOS 3.3V ±50ppm
XLH535156.250000I Renesas晶振 XTAL OSC XO 156.2500MHZ HCMOS XPRESSO  FXO-HC53 156.25 MHz HCMOS 3.3V ±50ppm
XLH536156.250000X Renesas晶振 XTAL OSC XO 156.2500MHZ HCMOS XPRESSO  FXO-HC53 156.25 MHz HCMOS 3.3V ±25ppm
XLH536135.000000X Renesas晶振 XTAL OSC XO 135.0000MHZ HCMOS XPRESSO  FXO-HC53 135 MHz HCMOS 3.3V ±25ppm
XLH536114.775489I Renesas晶振 XTAL OSC XO 114.775489MHZ HCMOS XPRESSO  FXO-HC53 114.775489 MHz HCMOS 3.3V ±25ppm
XLH536098.304000I Renesas晶振 XTAL OSC XO 98.3040MHZ HCMOS SMD XPRESSO  FXO-HC53 98.304 MHz HCMOS 3.3V ±25ppm
XLH536088.000000I Renesas晶振 XTAL OSC XO 88.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 88 MHz HCMOS 3.3V ±25ppm
XLH536066.666000I Renesas晶振 XTAL OSC XO 66.6660MHZ HCMOS SMD XPRESSO  FXO-HC53 66.666 MHz HCMOS 3.3V ±25ppm
XLH536044.545000I Renesas晶振 XTAL OSC XO 44.5450MHZ HCMOS SMD XPRESSO  FXO-HC53 44.545 MHz HCMOS 3.3V ±25ppm
XLH536033.330000I Renesas晶振 XTAL OSC XO 33.3300MHZ HCMOS SMD XPRESSO  FXO-HC53 33.33 MHz HCMOS 3.3V ±25ppm
XLH536013.300000I Renesas晶振 XTAL OSC XO 13.3000MHZ HCMOS SMD XPRESSO  FXO-HC53 13.3 MHz HCMOS 3.3V ±25ppm
XLH536006.000000I Renesas晶振 XTAL OSC XO 6.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 6 MHz HCMOS 3.3V ±25ppm
XLH536002.048000I Renesas晶振 XTAL OSC XO 2.0480MHZ HCMOS SMD XPRESSO  FXO-HC53 2.048 MHz HCMOS 3.3V ±25ppm
XLH538100.000000X Renesas晶振 XTAL OSC XO 100.0000MHZ HCMOS XPRESSO  FXO-HC53 100 MHz HCMOS 3.3V ±20ppm
XLH538074.250000X Renesas晶振 XTAL OSC XO 74.2500MHZ HCMOS SMD XPRESSO  FXO-HC53 74.25 MHz HCMOS 3.3V ±20ppm
XLH538050.000000X Renesas晶振 XTAL OSC XO 50.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 50 MHz HCMOS 3.3V ±20ppm
XLH538048.000000X Renesas晶振 XTAL OSC XO 48.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 48 MHz HCMOS 3.3V ±20ppm
XLH538040.000000X Renesas晶振 XTAL OSC XO 40.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 40 MHz HCMOS 3.3V ±20ppm
XLH538033.000000X Renesas晶振 XTAL OSC XO 33.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 33 MHz HCMOS 3.3V ±20ppm
XLH538030.720000X Renesas晶振 XTAL OSC XO 30.7200MHZ HCMOS SMD XPRESSO  FXO-HC53 30.72 MHz HCMOS 3.3V ±20ppm
XLH538025.000000X Renesas晶振 XTAL OSC XO 25.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 25 MHz HCMOS 3.3V ±20ppm
XLH538020.000000X Renesas晶振 XTAL OSC XO 20.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 20 MHz HCMOS 3.3V ±20ppm
XLH538019.200000X Renesas晶振 XTAL OSC XO 19.2000MHZ HCMOS SMD XPRESSO  FXO-HC53 19.2 MHz HCMOS 3.3V ±20ppm
XLH538013.500000X Renesas晶振 XTAL OSC XO 13.5000MHZ HCMOS SMD XPRESSO  FXO-HC53 13.5 MHz HCMOS 3.3V ±20ppm
XLH538013.000000X Renesas晶振 XTAL OSC XO 13.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 13 MHz HCMOS 3.3V ±20ppm
XLH538012.288000X Renesas晶振 XTAL OSC XO 12.2880MHZ HCMOS SMD XPRESSO  FXO-HC53 12.288 MHz HCMOS 3.3V ±20ppm
XLH538012.000000X Renesas晶振 XTAL OSC XO 12.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 12 MHz HCMOS 3.3V ±20ppm
XLH538010.000000X Renesas晶振 XTAL OSC XO 10.0000MHZ HCMOS SMD XPRESSO  FXO-HC53 10 MHz HCMOS 3.3V ±20ppm
另一种是积分输出噪声,通常也称为输出噪声电压。它是特定频率范围内的频谱噪声密度。在ADC或DAC等应用中,从DC到系统带宽的所有LDO噪声都作为一个整体进行积分和计算,从而影响ADC/DAC的精度。因此,总输出噪声对此类应用非常重要,典型图表如图4所示。图3和图4取自具有出色性能的Renesas瑞萨晶振低噪声LDO。

图4

图5

瑞萨发布两款超低噪声LDORAA214020和RAA214023额定电压为5.5V,2A输出,现在完全有资格为瑞萨时序和时钟IC产品组合供电,并且包含在每个评估板的BOM中。下面给出了一些匹配时钟IC和LDO器件的例子。更多不同电流额定值和性能的低噪声LDO即将推出。

Renesas offers the broadest and deepest silicon timing portfolio in the industry. In addition to our wide selection of buffers and clock synthesizer products, we deliver leading-edge system timing solutions to resolve timing challenges in virtually any application. With proven expertise spanning more than twenty years in both analog and digital timing, our portfolio features the lowest phase noise and highest performance in advanced timing technology.

The timing and clock ICs are widely used in applications like networking, RF, IoT, telecom, image sensors, medical, and even audio applications. When designing the external circuitry around a timing IC, we must pay attention to the power supply design. Just like we should not fill a Lamborghini with cheap gas, we are not supposed to power our low-noise timing ICs with noisy power supplies.

For timing and clock ICs used in all the mentioned applications, the power source is usually either battery or any voltage bus between 5V to AC. The power source voltage is typically stepped down to an appropriate level through a switch-mode power supply. Here, some external radiated or conducted noise may be coupled into the system and the power supply may generate its own internal noise causing its output voltage to carry a wide frequency spectrum and inaccurate timing/clock signals to be generated. We should not feed any noise-sensitive timing or clock IC directly from such noisy power supply without adding a strong filter or a low-noise LDO, as shown in Figure 1. A low-noise LDO is always preferred over large filters due to size advantage, accurate output voltage and better dynamic load response.

Such low-noise LDO often has very high Power Supply Rejection Ratio (PSRR) to block the incoming noise and it has very low self-generated noise as well. The PSRR is the ratio LDO input voltage ripple vs. output voltage ripple at a specific frequency, and is typically expressed in log form:

图像

The PSRR typically varies with load current, headroom voltage, output capacitor, and, depending on the part, external noise filter capacitor and output voltage. High-frequency PSRR can be easily improved by external capacitors. However, for low-frequency filtering, the capacitor may become quite large and expensive, therefore selecting an LDO with very high PSRR at low frequencies may help reduce the capacitor size.

Figure 2 shows the PSRR variance over various system settings. Per Figure 2B, the PSRR is higher with a larger output capacitor at high frequencies and the LDO already has very high PSRR at low frequencies. Per Figure 2D, if an even higher PSRR at light load is desired, a designer can add a small, low-cost capacitor on the bandgap pin, which improves not only PSRR, but the internal noise as well.

The other important parameter with an LDO is the internal noise, which is indicated in two fashions. One is spectral noise density, a curve that shows noise versus frequency. In applications like RF with regulation on the frequency spectrum, the noise has to be controlled within the “transmit mask” to pass certification testing. Hence, the user should check Spectral Noise Density curves around the frequency of interest. A typical spectral noise chart is shown in Figure 3.

The other is integrated output noise, also commonly called output noise voltage. It is the spectral noise density integrated over a certain frequency range. In applications like ADC or DAC, all the LDO noise from DC to the bandwidth of the system is integrated and computed as a whole to affect the ADC/DAC accuracy. Therefore, total output noise is important for such applications, and a typical chart is shown in Figure 4. Figure 3 and 4 are taken from Renesas low noise LDOs with excellent performance.

Renesas has released two ultra-low noise LDOs RAA214020 and RAA214023 rated at 5.5V and 2A output, and they are now fully qualified to power Renesas timing and clock IC portfolio and are included in the BOM of every evaluation board. Some examples are shown below with matching clock IC and LDO devices. More low-noise LDOs of various current ratings and performance are coming soon.